131 research outputs found

    The Kalai-Smorodinski solution for many-objective Bayesian optimization

    Get PDF
    An ongoing aim of research in multiobjective Bayesian optimization is to extend its applicability to a large number of objectives. While coping with a limited budget of evaluations, recovering the set of optimal compromise solutions generally requires numerous observations and is less interpretable since this set tends to grow larger with the number of objectives. We thus propose to focus on a specific solution originating from game theory, the Kalai-Smorodinsky solution, which possesses attractive properties. In particular, it ensures equal marginal gains over all objectives. We further make it insensitive to a monotonic transformation of the objectives by considering the objectives in the copula space. A novel tailored algorithm is proposed to search for the solution, in the form of a Bayesian optimization algorithm: sequential sampling decisions are made based on acquisition functions that derive from an instrumental Gaussian process prior. Our approach is tested on four problems with respectively four, six, eight, and nine objectives. The method is available in the Rpackage GPGame available on CRAN at https://cran.r-project.org/package=GPGame

    Bayesian Quantile and Expectile Optimisation

    Full text link
    Bayesian optimisation is widely used to optimise stochastic black box functions. While most strategies are focused on optimising conditional expectations, a large variety of applications require risk-averse decisions and alternative criteria accounting for the distribution tails need to be considered. In this paper, we propose new variational models for Bayesian quantile and expectile regression that are well-suited for heteroscedastic settings. Our models consist of two latent Gaussian processes accounting respectively for the conditional quantile (or expectile) and variance that are chained through asymmetric likelihood functions. Furthermore, we propose two Bayesian optimisation strategies, either derived from a GP-UCB or Thompson sampling, that are tailored to such models and that can accommodate large batches of points. As illustrated in the experimental section, the proposed approach clearly outperforms the state of the art

    Regret Bounds for Noise-Free Bayesian Optimization

    Full text link
    Bayesian optimisation is a powerful method for non-convex black-box optimization in low data regimes. However, the question of establishing tight upper bounds for common algorithms in the noiseless setting remains a largely open question. In this paper, we establish new and tightest bounds for two algorithms, namely GP-UCB and Thompson sampling, under the assumption that the objective function is smooth in terms of having a bounded norm in a Mat\'ern RKHS. Importantly, unlike several related works, we do not consider perfect knowledge of the kernel of the Gaussian process emulator used within the Bayesian optimization loop. This allows us to provide results for practical algorithms that sequentially estimate the Gaussian process kernel parameters from the available data

    Using numerical plant models and phenotypic correlation space to design achievable ideotypes

    Full text link
    Numerical plant models can predict the outcome of plant traits modifications resulting from genetic variations, on plant performance, by simulating physiological processes and their interaction with the environment. Optimization methods complement those models to design ideotypes, i.e. ideal values of a set of plant traits resulting in optimal adaptation for given combinations of environment and management, mainly through the maximization of a performance criteria (e.g. yield, light interception). As use of simulation models gains momentum in plant breeding, numerical experiments must be carefully engineered to provide accurate and attainable results, rooting them in biological reality. Here, we propose a multi-objective optimization formulation that includes a metric of performance, returned by the numerical model, and a metric of feasibility, accounting for correlations between traits based on field observations. We applied this approach to two contrasting models: a process-based crop model of sunflower and a functional-structural plant model of apple trees. In both cases, the method successfully characterized key plant traits and identified a continuum of optimal solutions, ranging from the most feasible to the most efficient. The present study thus provides successful proof of concept for this enhanced modeling approach, which identified paths for desirable trait modification, including direction and intensity.Comment: 25 pages, 5 figures, 2017, Plant, Cell and Environmen

    TREGO: a Trust-Region Framework for Efficient Global Optimization

    Full text link
    Efficient Global Optimization (EGO) is the canonical form of Bayesian optimization that has been successfully applied to solve global optimization of expensive-to-evaluate black-box problems. However, EGO struggles to scale with dimension, and offers limited theoretical guarantees. In this work, a trust-region framework for EGO (TREGO) is proposed and analyzed. TREGO alternates between regular EGO steps and local steps within a trust region. By following a classical scheme for the trust region (based on a sufficient decrease condition), the proposed algorithm enjoys global convergence properties, while departing from EGO only for a subset of optimization steps. Using extensive numerical experiments based on the well-known COCO {bound constrained problems}, we first analyze the sensitivity of TREGO to its own parameters, then show that the resulting algorithm is consistently outperforming EGO and getting competitive with other state-of-the-art black-box optimization methods
    • …
    corecore